7 research outputs found

    Detection of Human Vigilance State During Locomotion Using Wearable FNIRS

    Get PDF
    Human vigilance is a cognitive function that requires sustained attention toward change in the environment. Human vigilance detection is a widely investigated topic which can be accomplished by various approaches. Most studies have focused on stationary vigilance detection due to the high effect of interference such as motion artifacts which are prominent in common movements such as walking. Functional Near-Infrared Spectroscopy is a preferred modality in vigilance detection due to the safe nature, the low cost and ease of implementation. fNIRS is not immune to motion artifact interference, and therefore human vigilance detection performance would be severely degraded when studied during locomotion. Properly treating and removing walking-induced motion artifacts from the contaminated signals is crucial to ensure accurate vigilance detection. This study compared the vigilance level detection during both stationary and walking states and confirmed that the performance of vigilance level detection during walking is significantly deteriorated (with a

    Movement artefact removal from NIRS signal using multi-channel IMU data

    No full text
    Abstract Background The non-invasive nature of near-infrared spectroscopy (NIRS) makes it a widely accepted method for blood oxygenation measurement in various parts of the human body. One of the main challenges in this method lies in the successful removal of movement artefacts in the detected signal. In this respect, multi-channel inertia measurement unit (IMU) containing accelerometer, gyroscope and magnetometer can be used for better modelling of movement artefact than using accelerometer only, which as a result, movement artefact can be more accurately removed. Methods A wearable two-channel continuous wave NIRS system, incorporating an IMU sensor which contain accelerometer, gyroscope and magnetometer in it, was developed to record NIRS signal along with the simultaneous recording of movement artefacts related signal using the IMU. Four healthy subjects volunteered in the recording of the NIRS signals. During the recording from the first two subject, movement artefacts were simulated in one of the NIRS channels by tapping the photodiode sensor nearby. The corresponding IMU data for the simulated movement artefacts were used to estimate the artefacts in the corrupted signal by autoregressive with exogenous input method and subtracted from the corrupted signal to remove the artefacts in the NIRS signal. Signal-to-noise ratio (SNR) improvement was used to evaluate the performance of the movement artefacts removal process. The performance of the movement artefacts estimation and removal were compared using accelerometer only, accelerometer and gyroscope, and accelerometer, gyroscope and magnetometer data from IMU sensor to estimate the artefact in NIRS reading. For the remaining two subjects the NIRS signal was recorded by natural movement artefacts impact and the results of artefacts removal was compared using accelerometer only, accelerometer and gyroscope, and accelerometer, gyroscope and magnetometer data from IMU sensor to estimate the artefact in NIRS reading. Results The quantitative and qualitative results revealed that the SNR improvement increases with the number of IMU channels used in the artefacts estimation, and there were approximately 5–11 dB increase in SNR when nine channel IMU data were used rather than using only three channel accelerometer data only. The artefact removal from natural movements also demonstrated that the combination of gyroscope and magnetometer sensors with accelerometer provided better estimation and removal of the movement artefacts, which was revealed by the minimal change of the HbO2 and Hb level before, during and after movement artefacts occurred in the NIRS signal. Conclusion The movement artefacts in NIRS can be more accurately estimated and removed by using accelerometer, gyroscope and magnetograph signals from an integrated IMU sensor than using accelerometer signal only

    Sensor Location Optimization of Wireless Wearable fNIRS System for Cognitive Workload Monitoring Using a Data-Driven Approach for Improved Wearability

    No full text
    Functional Near-Infrared Spectroscopy (fNIRS) is a hemodynamic modality in human cognitive workload assessment receiving popularity due to its easier implementation, non-invasiveness, low cost and other benefits from the signal-processing point of view. Wearable wireless fNIRS systems used in research have promisingly shown that fNIRS could be used in cognitive workload assessment in out-of-the-lab scenarios, such as in operators’ cognitive workload monitoring. In such a scenario, the wearability of the system is a significant factor affecting user comfort. In this respect, the wearability of the system can be improved if it is possible to minimize an fNIRS system without much compromise of the cognitive workload detection accuracy. In this study, cognitive workload-related hemodynamic changes were acquired using an fNIRS system covering the whole forehead, which is the region of interest in most cognitive workload-monitoring studies. A machine learning approach was applied to explore how the mean accuracy of the cognitive workload classification accuracy varied across various sensing locations on the forehead such as the Left, Mid, Right, Left-Mid, Right-Mid and Whole forehead. The statistical significance analysis result showed that the Mid location could result in significant cognitive workload classification accuracy compared to Whole forehead sensing, with a statistically insignificant difference in the mean accuracy. Thus, the wearable fNIRS system can be improved in terms of wearability by optimizing the sensor location, considering the sensing of the Mid location on the forehead for cognitive workload monitoring

    Early diagnosis with alternative approaches: Innovation in lung cancer care

    No full text
    Cancer is one of the primary concerns of mortality throughout the world in the present day. Among different types of cancers, lung cancer (LC) is predominant (21.77% of overall cancer caused death). It is classified into two major categories: oat cell or small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). The mortality due to NSCLC (~85%) is almost six times higher than the SCLC (15%). The identification of risk factors can reduce cancer burden and human fatality; however, this cannot prevent the severity of LC. In this case, the early diagnosis of LC can be an effective pathway in providing better treatment to the patients, which eventually may result in less fatality. This article offers an overview of several existing screening methods for the early diagnosis of LC. Nevertheless, these methodologies have limitations of reliability towards the diagnosis of cancer malignancy. Therefore, the prospects of different alternative approaches and their challenges to overcome this barrier for the early diagnosis of malignant tumor cells have been articulated in this article

    Smart Data-Driven Optimization of Powered Prosthetic Ankles Using Surface Electromyography

    No full text
    The advent of powered prosthetic ankles provided more balance and optimal energy expenditure to lower amputee gait. However, these types of systems require an extensive setup where the parameters of the ankle, such as the amount of positive power and the stiffness of the ankle, need to be setup. Currently, calibrations are performed by experts, who base the inputs on subjective observations and experience. In this study, a novel evidence-based tuning method was presented using multi-channel electromyogram data from the residual limb, and a model for muscle activity was built. Tuning using this model requires an exhaustive search over all the possible combinations of parameters, leading to computationally inefficient system. Various data-driven optimization methods were investigated and a modified Nelder–Mead algorithm using a Latin Hypercube Sampling method was introduced to tune the powered prosthetic. The results of the modified Nelder–Mead optimization were compared to the Exhaustive search, Genetic Algorithm, and conventional Nelder–Mead method, and the results showed the feasibility of using the presented method, to objectively calibrate the parameters in a time-efficient way using biological evidence

    PyLEnM: A Machine Learning Framework for Long-Term Groundwater Contamination Monitoring Strategies.

    No full text
    In this study, we have developed a comprehensive machine learning (ML) framework for long-term groundwater contamination monitoring as the Python package PyLEnM (Python for Long-term Environmental Monitoring). PyLEnM aims to establish the seamless data-to-ML pipeline with various utility functions, such as quality assurance and quality control (QA/QC), coincident/colocated data identification, the automated ingestion and processing of publicly available spatial data layers, and novel data summarization/visualization. The key ML innovations include (1) time series/multianalyte clustering to find the well groups that have similar groundwater dynamics and to inform spatial interpolation and well optimization, (2) the automated model selection and parameter tuning, comparing multiple regression models for spatial interpolation, (3) the proxy-based spatial interpolation method by including spatial data layers or in situ measurable variables as predictors for contaminant concentrations and groundwater levels, and (4) the new well optimization algorithm to identify the most effective subset of wells for maintaining the spatial interpolation ability for long-term monitoring. We demonstrate our methodology using the monitoring data at the Savannah River Site F-Area. Through this open-source PyLEnM package, we aim to improve the transparency of data analytics at contaminated sites, empowering concerned citizens as well as improving public relations
    corecore